
A, 
B, 

b, 
c. 

gw7 
N*, 
h, 

ff, 

p 
ht, 
h W> 

hs, e, 

L’, 

FAUL A. LIBRA: and SHUN CHEN§ 

Department of Aerospace Engineering and Applied Mechanics, Polytechnic Institute of Brooklyn, 
Brooklyn, New York, U.S.A. 

Abstract-An approximate analysis of the growth of, and the temperature within, a deposit which 
may occur in a cold surface in a gas stream is developed with the convective heat transfer to the surface 
of the deposit taken into account. Simple “short time” and “long time*’ solutions are obtained. A 
numerical example which may be of interest in connection with cryogenic surfaces in a hypersonic wind 

tunnel is presented. 

NOMENCLATURE 

0(4 + L’)H$ parameter; 
2{(0 - 1) + If, + 6(L’ _C, H’)6}Km, 
parameter ; 
constant defined by equation (6); 
constant defined by equation (16); 
stagnation enthalpy ratio, llWllis, e; 
arbitrary constant; 
perturbed dependent variable, cf. equa- 
tion (19); 
hqC, O/kdTR, non-dimensionat thickness 
of the deposited layer; 
limiting value of H at T -r X ; 
thickness of deposited layer; 
specific enthalpy of species i; 
stagnation enthalpy at the surface 
T= Tj; 
sta~at~o~ enthalpy of the free gas 
stream; 
thickness of deposited layer at t --f co ; 
rate of growth of the despoted layer; 
thermal conductivity of deposit; 
latent heat of condensation from the 
gas phase to the solid phase; 
~e~~~k~~~~T~), non-~mension~ latent 
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y&/kd, non-dimensional heat-transfer. 
rate; 
convective heat-transfer rate; 
convective heat-transfer rate with no 
deposition; 
totai heat-transfer rate; 
time ; 
temperature; 
temperature of the plate; 
temperature of exposed surface of the 
deposited layer; 
velocity component in x direction; 
velocity component in z direction; 
coordinate in streamwise dlrection; 
coordinate perpendicular to I direc- 
tion; 
thermal diffusivity ; 
coefficient defined by equation (L3); 
ZJh : 
Tf/TR, non-dimensional temperature; 
exponent in equation (21); 
coefficient of viscosity; 
aqc/&, mass-heat-trans,?i parameter; 
(a~~kd)(~~~), parameter; 
density;. 
e7: 0 a~/k~TZ,, non-dimensional time; 
arl&rary non-dimensional time. 

Subscripts 
4 condition in deposited layer; 
1, species i; 

e, free stream condition; 
g, gas phase condition. 
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I. INTRODUCTION 
THERE appears to be a variety of applications in 
boundary-layer control, cryogenic engineering, 
low density wind tunnel operation, and geo- 
physics involving fluid flow over surfaces with 
temperatures sufficiently low so that deposition 
of the fluid, or of components thereof in case of 
mixtures, occurs on the surface. In particular, it 
has been suggested by Cresci and Visich [l] 
that the perfo~ance of a supersonic compressor 
for use in a drive system for a hypersonic wind 
tunnel may be improved if boundary-layer 
control as obtained by gas solidification on 
cryogenically cooled blades is employed. The 
occurrence of frost on cryo-surfaces in air streams 
has been studied by Smith et al. [2] and appears 
to be a frequently encountered problem in 
cryogenic engineering (cf. 131). Chuan and 
Karamcheti [4] have described the operation of a 
low density, two phase wind tunnel which in- 
volves condensation of the working fluid down- 
stream of the test section on a cryo-surface; 
further studies on the deposition phenomena 
connected with this application were carried out 
by them and are presented in [5] and [6]. Finally, 
the formation of ice on the surface of lakes and 
oceans has apparently been studied by geo- 
physicists (cf. [7]). 

None of the cited references which actually 
discuss the heat conduction within the deposited 
layer as it grows in thickness with time appear 
to include the effect of convective heating which 
generally accompanies the phase change from 
liquid or gas to solid. Accordingly, such solu- 
tions apply only for either “short time” or “thin 
layer” deposits. On the contrary, in several of 
the applications cited above, the “long time” 
behavior, which as will be seen below, is deter- 
mined by the convective heating, is of importance. 
Moreover, quantitative estimates of the meaning 
of either “short time” or “thin layers” for a 
particular problem can only be made if there is 
available a more complete analysis; this does not 
appear to have been carried out to date. Accord- 
ingly, it is the purpose of this report to present 
an analysis of the growth of a deposited layer 
with convective heat transfer considered and to 
indicate on the basis thereof the essential 
influence of such heat transfer. 

It will be assumed that the heat conduction 

within the deposit may be treated as one- 
dimensional in terms of a coordinate normal to a 
cold solid surface.7 According to this approxi- 
mation the spatial distribution of the thickness 
of the deposit at a given instant of time can be 
constructed provided the spatial distribution of 
convective heating is known. The moving 
boundary representing the surface of the deposit 
introduces considerable complexity into the 
analysis; therefore, it is found necessary to 
develop an approximate solution based on the 
integral method of Goodman [g]. 

As the analysis is presented below, it will be 
observed that several of the techniques and 
assumptions employed have been previously 
used in conIlection with the sublimation of a 
surface exposed, for example to a hypersonic 
flow, In this connection the work of Sutton [9] 
and of Economos [lo] are especially appropriate. 
It is noted, however, that the deposition and 
sublimation problems are essentially different; 
the former will be shown below to lead to an 
asymptotic thickness as time increases whereas 
the latter is known to lead to a steady rate of 
recession of the surface as time increases. 

II. ANALYSIS 
Consider an element of a deposit at a particular 

instant of time and the coordinate system shown 
in Fig. 1. According to the one-dimensional 
assumption cited above and to the further 
assumption that the thermal diffusivity of the 
deposit CZ~ is constant,: the temperature history 
is described by the equation 

Tt = wTzz (1) 
---. 

-t This assumption could be put in quantitative form 
by considering the more complete heat conduction 
equations, e.g. for two-dimensional, unsteady systems, 
and by introducing two length scales, one corresponding 
to the coordinate aiong the solid surface, L, the second 
normal thereto, 6. Denote r = 6/L < 1 and consider a 
series expansion of the temperature and convective 
heating in nowers of 7. The first-order terms will corre- 
spond to those considered here. Singular behavior may 
occur at leading edges. The first author is indebted for 
this point of view to Dr. Frank Lane of the General 
Applied Science Laboratories. 

: An anonymous reviewer has calied attention to 
possible errors between experiment and the predictions 
of the present analysis because of this assumption; there 
is no difficulty connected with removal of this ad = con- 
stant restriction. 



THE GROWTH OF A DEPOSITED LAYER ON A COLD SURFACE 397 

t 

2, In previous analyses (cf. [51_[7]) the contribu- 

-U -e 
tion qc to the boundary condition at z = h(t) is 
not included. It is perhaps worth noting that 
there would appear to be cases in which 
qe -C 0; e.g. suppose a gas in a non-equilibrium 
state flows at low speed over a solid surface with 
a temperature Te in the external flow, Te < Tf. 
Then, if condensation occurs on the solid surface 
h > 0, but qc < 0. In the present report only the 
case qe > 0, which seems from the above cited 
references to be the more prevalent, will be 

FIG. 1. Schematic representation of the conduction model. considered explicity, although the analysis 
below is clearly applicable to the case qe < 0 
and although quite different growth of the 

with the conditions deposit would be expected. 

T(0, r) = TR 
The solution of the problem posed by equa- 

tion (1) subject to its boundary conditions does 
T(h, t) = Tf not appear to be possible by analytic means for 

and qe # 0. However, for “short time” it would be 

k&-z@; t) = qc + pdh. (2) 
expected on physical ground that pd Lh 9 qc and 
thus that for such times the classical solution 

Equation (2) which presents the boundary condi- prevails (cf. [5]-[7]); the thickness of the deposit 
tion of the moving surface perhaps requires is given by this solution as 
some discussion. h = 2b(u&‘2 (5) 

The boundary condition at the moving sucface where the constant b is given by the transcen- 
Shown in Fig. 2 are the factors contributing dental equation 

to mass and energy conservation at the moving 
surface when a multi-component gas is deposit- 

beb2 erf (b) - (kd/adpdLrl/2)(Tf - TR) (6) 

ing thereon and when heat conduction occurs 
from the gas to the deposit. The energy balance 
when N’ species are depositing would be, at 
z = h(r), 

,i ,,,, ,,,,,,,,,,,,,,,,, 
w)g-[ypi(7;jl 

P 

(kTz), - (kT& - h [ $xht(Tf)],-- 

N. 

I: pi: vt ht(Tf) 
1 

= 0 (3) 
t=1 l7 ENERGY BALANCE 

while the mass balance would be 

Pdh-o. (4) 

Now let qc E (kT& and take N’ = 1, i.e. 
assume only one component of the gas is 
depositing; then equations (3) and (4) yield 

which is equation (2). 

MASS BALANCE 

FIG. 2. Energy and mass balance at the moving surface. 
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This analytic solution could be used to provide 
initial data for finite difference calculation 
starting at t .:g 0. However, here an approximate 
solution based on the integral method due to 
Goodman [8] is sought. Proceed as follows: 
Integrate equation (I) with respect to z from zero 
to the variable limit h; there is obtained after 
introduction of the boundary conditions, the 
equation 

h < 0 and where mass transfer into the gas 
stream leads to a reduction, i.e. to the so called 
“blockage effect”, of the convective heating 
(cf. [9] and [lo]). The general analysis of the local 
history of a deposit can be carried forward 
without explicit representations for qc, o and V; 
for a steady gas stream these parameters are 
constants for each element of deposit but, in 
general: vary with distance along the cold surface. 
It will be recognized that an accurate representa- 
tion. for qC, 3 and n will be difficult to provide 
even for relatively simple geometric and fluid 
mechanical situations; even for laminar flow 
there must be considered a non-similar boundary 
layer with time as a parameter and with the mass 
transfer determined simultaneously with the 
present analysis of the growth of the deposit 
applied locally in a spatial sense. 

il 

where T 7. .:/A Now assume a temperature 
profile 

T ::: Tf -- (7j -- T,t) (1 - 27 -+- qj - Q(v -. 772) 

(8) 

Where Q .=- q&/Ad; equation (8) satisfies all the 
boundary conditions at 7 = 0,l for any Q_ 
Substitution of equation (8) into equation (7) 
leads to 

-- 12Ud[Q - (rf - r’r()] (9) 

Twhich is an equation in two unknowns, b and Q. 
One more equation comes from equation (2) 
with the definition of Q introduced; thus 

Q :h,‘.G;l)(@ $- IZ,CJ&) (10) 

Differentiation of‘ equation (10) and elimina- 
tion of Q and Q by use of equation (i0) and of 
the result of that differentiation yields a single 
second-order equation in h. In carrying c ut the 
differentiation it is assumed that qe depends on 
h, i.e. that the convective heat transfer is in- 
fluenced by the rate of deposition, so that a 
term (aqc/dz) arises; in particuiar the following 
linear form will be assumed: 

Yr == :/c, a + ?A (11) 

where qc, o IS the convective heat transfer to a 
surface with 7’.= Tf and with no deposition 
and where n =:- (&/ah) is a proportionality 
factor accounting for the influence of the deposi- 
tion on the convective heat transfer. Representa- 
tions of the type implied by equation (11) have 
been found to be useful in studies of the sublima- 
tion of surfaces in hypersonic flows where 

The final equation for h may be put in a con- 
venient form if the following non-dimensional, 
dependent and independent variables are in- 
troduced : 

H = hqc, o/x.dTR 
x := !q,2, o ad/k;Tf ! 

(12) 

and if the following parameters, which relate to 
the properties of the gas and of the deposit and 
are independent of the flow properties as con- 
tained in qC, O. are introduced; _ 

n’ = (%/kd)(n/Tf) 

1,’ = (adpd/kd)(L/T’) 

9 - rf/TR 

There results 

[f+’ + L’j] Hs (d2.r_r!dT2) + {2(6 - 

I (13) 

I) 
+ 2[1 + &(dH/dT)]H .f 2L’@Y(dH/dT) 

+ 12L’B -j- 12rr’B )H(dH/dr) + 12H = 

12(e - I). (14) 

Note that a solution to equation (14) permits Q 
to be computed as a function of T from equation 
(IO) with equation (11) substituted and with 
non-dimensionalization carried out. Thus the 
temperature profiles can be estimated for various 
times. 

Initial conditions 
One of the initial conditions H N h = 0 at 
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t = 0 is evident on physical grounds; the second 
must be deduced from the behavior of equation 
(14). Clearly, a singularity occurs at t = 0; the 
solution for “short times” given by equation (5) 
and (6) suggests the assumption 

H = c+Ja (15) 

where c is a constant to be determined. Sub- 
stituting into equation (14) leads to the result 
that 

2(e - 1) + 12L’ 8 + 121T’ 1’2 
C-- 

(7T’ + L’)fl 

12(n’ + L’)(8 - 1>e l/2 

’ + c(s - 1) f 6.L,‘@ + &‘0]2 2 

09 
as 7 -+ 0. Thus, equations (15) and (16) provide 
starting values for H and dH/dT for T > 0, 
~92 4 8 - 1. Indeed, these equations provide 
an approximate solution which may be compared 
to the exact “short time” solution given by 
equations (5) and (9; for this comparison re- 
introduce h, ? and L, into equations (15) and (19 
and set rr’ = 0 as suggested by the neglect of qc 
in this solution; then 

h = c(u&‘2 (17) 

and comparison of equations (5) and (7) in- 
dicates that c should be considered an approxi- 
mation to 2b. The two constants considered as 
functions of (k&dp&(Tf - TR) are compared 
in Fig. 3 over a range of this parameter believed 

b 

k: 
2 

to be of interest; equation (8), specialized to 
d = 0, may be more convenient for determining 
the “short-time” solution than equation (6). 
Note also that the above inequality provides an 
estimate of the time duration for which the 
“short-time” solution provides an adequate 
description of the phenomena. 

Asymptotic behavior 
An exa~nation of equation (14) in the limit 

as T + 00 under the assumption that dH/dr, 
daH/dG -to indicates that H approaches a 
constant value Hm given by 

Hm=6- 1. (18) 
This leads to the physically recognizable result 
that 

hC0 = MTf - TR)lclc, 0 

i.e. the deposit will approach a limiting thickness 
dictated by the convective heating without mass 
transfer. Note that h, EE 0, as qc. o -+ co, as 
occurs, e.g. at the leading edge of a plate. 

The actual approach to this asymptotic value 
Hm can be obtained by linearization about Hm; 
i.e. in the usual fashion, let 

HrsiHmfI;i,I;i<HHoo. (19) 
Then, equation (14) leads to 

A(d2&‘d;2> + B(d@d$ + 12lr? = 0 (20) 

where 
A = 8(d + L’)H; 

B = 2((0 - 1) + Hm, + 6(L’ + d)O)H$ 

The solution for @ under the ~s~ption that 
there occurs only one physically acceptable root 
to the secular equation? is 

fi = H* exp [- XT] (21) 
where X > 0, and given by 

AP- BX+ 12=0 (22) 
and where H* is an arbitrary constant selected 
so that H has a desired value at 7 = T*, e.g. the 
value given by a numerical solution of equation 
(14) carried out to 7 = T*. 

f Clearly, for some values of the parameter &, L’, B 
two positive values of X might be obtained but it would 
be expected that one could be ruled out on physical 
grounds. Indeed this was found to be the case in the 
numerical example considered below. 

Frc;. 3. Comparison of approximate and exact “short- 
time” solutions. 

HM 8 B 
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The parameter n 
As mentioned previously the parameter v 

accounts in a rough manner for the effect of 
mass transfer on convective heat transfer. 
Empiri~lly, it might be assumed that the corre- 
lation found useful for subliming bodies in 
hypersonic flows would apply with a change of 
sign; if so, then, e.g. from [9]-[12], it is reasonable 
to let 

= = IsPd (&, e - &J (23) 

where the value of /I is on the order of unity 
and depends on whether the flow is laminar or 
turbulent and on the ratio of the molecular 
weight of the deposited specie and of the gas 
mixture in the external flow; and where h, 
must be estimated from the temperat~e 7” and 
the concentration at the surface. 

The spatial distribution of deposit 
If it is assumed that the parameters 7r‘, L’ and 

B are constants for a given situation involving 
deposition, then the solution H = H(T) given 
by the above analysis can be applied to deter- 
mine for a given time t the thickness of the 
deposit h = h(x) provided the variation qe, o = 
qc, &XT) is known. For example, suppose a surface 
such as a flat plate is being considered; for this 
qc, 0 - x -112 and since h, -q;z, the deposit 
will have zero thickness for all times at the lead- 
ing edge and will grow with x at a particular 
time in a manner so as to correspond to the 
solution H = H(T) over the entire range of 
7 3 0. On the contrary, for a stagnation point 
where qC, 0 is constant with X, h = h(t) will be 
independent of x. 

III. NUMEFUCAL EXAWLE 
To illustrate application of the above analysis 

the deposition on a flat plate of nitrogen under 
conditions of possible interest in a hypersonic 
wind tunnel has been considered-t Equation (14) 
was rearranged as two first-order equations and 

7 After completion of this study McDermott (Fourth 
International Symposium on Rarefied Gas Dynamics, 
July 1964, Toronto) presented some experimental resuits 
concerning condensation on the cryogenically cooled 
walls of a hypersonic nozzle. It would be of interest to 
compare the results of the present analysis with these 
experiments. 

integrated by standard methods on the P. I. B- 
IBM 7040 computer. The physical and thermo. 
dynamic data for nitrogen were obtained from 
[13] and were 

L = 60 Cal/g 

ad = 6.29 x 10-4 ems/s 

pd = 1 g/cm3 
’ (24) 
1 

kd = 2.455 x 1O-4 Cal/s cm “IS J 

which leads to 

L’ = 4.05. (25) 

The value of 7” was assumed to be 38°K and 
the value of B to be 2. An estimation of #3 in 
equation (23) was made on the basis of laminar 
bo~nda~-layer theory for similar flow with 
h S, e = 280 Cal/g and gw = O-1 ; this leads to 

77’ = 11.9. (26) 

Finally, to obtain estimates of the spatial dis- 
tribution of the deposited layer at various times 
it was assumed that 

qc, 0 = 0‘47 P&&i, e, (1 - gw) (2p~~~~/~~)-l’z 

(27) 

which is the usual equation for laminar, flat 
plate heat transfer. If this expression for qcr o is 
substituted into the definitions of H and T 
[cf. equation (12)], it is clear that a solution 
H = H(T) can be interpreted to yield the spatial 
thickness distribution in the fcrm (peu&,/& 
(@&, efkd?+r) as a function of (~~u~~~~*) with the 
time in the form (&G, elkdTR)2(PsueltLa)2(Udt) as 
a parameter. Thus in addition to the physical 
parameters stated above and required for solu- 
tion of the growth of the deposit it is necessary 
to know the unit Reynolds number peuelpe of 
the gas stream and the parameter (&~~,~lk&?) 
as well. With these selected h = h(x, t) can be 
readily computed. 

It is perhaps of interest to note that in the 
neighborhood of the leading edge the “long 
time” solution provides the spatial distribution 
for all times suficiently long so that T > T*. 
Thus at a given time t, the thickness is distributed 
with x such that h - h, -xr12 exp [- X/X] 
where x is a positive constant. On the contrary 
for far downstream distances such that T 
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FIG. 4. Solution for H(T) with limiting behavior. 

NUMERICAL SOi.UTION 

FIG. S. Distribution of deposit with time as parameter-flat plate. 

satisfies the equalities for the short time solution directly applied to obtain the spatial and tern-- 
the thickness is independent of x. poral history of deposits in other flow geometries. 

The numerical solution for H = H(T) and the In particular for a stagnation point wherein 
two limiting solution for “short-time” and qc, o is constant with X, h w tl and t N T so that 
“long-time” are shown in Fig. 4. Figure 5 with proper scaling Fig. 4 will give the time 
presents the dis~ibution of deposit with time as history of a deposit at a stagnation point. 
a parameter. Note the use of the “long time” 
solution near the leading edge as discussed above. REFERENCES 
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R&mm&-Une anatyse approchee de fa croissance et du champ de temperature int&ienr d’un d&&t 
qui peut se produire sur une surfa@ dans un ~on~em~nt gazeux, est &udi&e en tenant compte do 
transport de chaleu par convection a La surface dn d&pot. Des sohrtions simpges pour nn “temps 
court” et pour un “temps iong” sant obtenues. Un exempb numhrique est present& qui peut avoit de 

l’intdret en connection avec les surfaces cryogeniques dans une soufflerie hyperaonique. 

Zu~m~~~~~-Das Anwachsen und die Temperatnr einer Ablagerung, die an einer kalten 
Uberfliiche in einem Gasstrom auftreten kann, wird n~erungswei~ untersucttt, wobei der konvektive 
W~rme~b~rga~ an die Ober~~he dar Ablagerung mite~nb~o~n wird. Man erhiitt einfache 
“Kurzzeit-” und “‘Lang&-” -L&ungen. Ein Z~le~~~sp~eI, das in Verbindung mit sehr tiefen 

O~r~h~tem~~tu~n in einem H~e~cha~i~ndkana~ interessieren din%, wird angegeben 


